Variable-order starting algorithms for implicit Runge?Kutta methods on stiff problems*1
نویسندگان
چکیده
منابع مشابه
Effective order strong stability preserving RungeKutta methods
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...
متن کاملBalanced Implicit Methods for Stiff Stochastic Systems
This paper introduces some implicitness in stochastic terms of numerical methods for solving stiff stochastic differential equations and especially a class of fully implicit methods, the balanced methods. Their order of strong convergence is proved. Numerical experiments compare the stability properties of these schemes with explicit ones.
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملLinearly Implicit Discrete Event Methods for Stiff Ode’s
This paper introduces two new numerical methods for integration of stiff ordinary differential equations. Following the idea of quantization based integration, i.e., replacing the time discretization by state quantization, the new methods perform first and second order backward approximations allowing to simulate stiff systems. It is shown that the new algorithms satisfy the same theoretical pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2003
ISSN: 0168-9274
DOI: 10.1016/s0168-9274(02)00137-x